Newmark Integrator ================== The Newmark integrator is a widely used implicit time integration method for dynamic analysis. Description ----------- This integrator is particularly suitable for: * Linear and nonlinear dynamic analysis * Problems with moderate to high frequency content * Cases requiring unconditional stability * Structural dynamics problems * Earthquake engineering applications The Newmark method uses a weighted average of acceleration and velocity to advance the solution in time. Parameters ---------- The Newmark integrator requires the following parameters: +----------+-------------------------------+---------------+-------------------------------------------+ | Parameter| Description | Default | Notes | +==========+===============================+===============+===========================================+ | gamma | Gamma factor | None | Required | +----------+-------------------------------+---------------+-------------------------------------------+ | beta | Beta factor | None | Required | +----------+-------------------------------+---------------+-------------------------------------------+ | form | Primary variable flag | "D" | Options: "D" (displacement), "V" | | | | | (velocity), or "A" (acceleration) | +----------+-------------------------------+---------------+-------------------------------------------+ Usage Example ------------- .. code-block:: python # Create a Newmark integrator integrator = fm.analysis.integrators.create_integrator("newmark", gamma=0.5, beta=0.25) # Create a Newmark integrator with velocity as primary variable integrator = fm.analysis.integrators.create_integrator("newmark", gamma=0.5, beta=0.25, form="V")