HHT Integrator ============== The HHT (Hilber-Hughes-Taylor) integrator is an implicit time integration method for dynamic analysis with controllable numerical damping. Description ----------- This integrator is particularly suitable for: * Structural dynamics problems requiring numerical damping * Cases where high-frequency noise should be filtered out * Nonlinear dynamic analysis * Long duration dynamic simulations * Problems with stiff differential equations The HHT method is an extension of the Newmark method that introduces controlled numerical damping while maintaining second-order accuracy. Parameters ---------- The HHT integrator requires the following parameters: +----------+--------------------------------+---------------------+-------------------------------------------+ | Parameter| Description | Default | Notes | +==========+================================+=====================+===========================================+ | alpha | Alpha factor | None | Required, controls numerical damping | +----------+--------------------------------+---------------------+-------------------------------------------+ | gamma | Gamma factor | 1.5 - alpha | Optional, defaults to 1.5 - alpha | +----------+--------------------------------+---------------------+-------------------------------------------+ | beta | Beta factor | (2-alpha)^2/4 | Optional, defaults to (2-alpha)^2/4 | +----------+--------------------------------+---------------------+-------------------------------------------+ Usage Example ------------- .. code-block:: python # Create an HHT integrator with only alpha specified (gamma and beta calculated automatically) integrator = fm.analysis.integrators.create_integrator("hht", alpha=-0.1) # Create an HHT integrator with all parameters explicitly defined integrator = fm.analysis.integrators.create_integrator("hht", alpha=-0.1, gamma=0.6, beta=0.3025)